	Liefen stomateutors of metogen and surfar deposition in ary forests of Cam and Few Metheo, Corr
2	
3	Heather T. Root ^{1*} , Sarah Jovan ² , Mark Fenn ³ , Michael Amacher ⁴ , Josh Hall ⁵ , John D. Shaw ⁶
4	
5	¹ Botany Department, Weber State University, Ogden, UT, 84401, heatherroot@weber.edu
6	² US Forest Service, Pacific Northwest Research Station, 620 SW Main Suite 400, Portland, OR 97205,
7	United States
8	³ US Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507,
9	United States
10	⁴ Logan Forestry Sciences Lab, Rocky Mountain Research Station, US Forest Service, 860 N 1200 E,
11	Logan, UT 84321, USA
12	⁵ US Forest Service, Santa Fe National Forest, 11 Forest Lane, Santa Fe, NM 87501.
13	⁶ Forest Inventory and Analysis, Rocky Mountain Research Station, 507 25th Street, Ogden, Utah 84322
14	USA
15	
16	Abstract
17	Anthropogenic nitrogen (N) and sulfur (S) deposition can negatively affect ecosystem functions and
18	lichen biomonitors can be a cost-effective way to monitor air pollution exposure across the landscape.
19	Interior dry forests of the southwestern United States face increasing development pressures; however,
20	this region differs from others with well-developed biomonitoring programs in having drier climates and a
21	greater fraction of deposition delivered in dry forms. We measured throughfall N and S deposition at 12
22	sites in Utah and 10 in New Mexico and co-located collection of 6 lichen species. N deposition ranged
23	from 0.76 to 6.96 kg/ha/year and S deposition from 0.57 to 1.44 kg/ha/year with elevated levels near
24	human development that were not predicted by commonly used simulation models. Throughfall N was
25	4.6 and 1.6 times higher in summer compared with fall-spring in Utah and New Mexico and S deposition
26	was 3.9 and 1.8 times higher in summer. Lichen N and S concentrations ranged from 0.97 to 2.7% and

27 0.09 to 0.33%. Replicate samples within plots showed high variability in N and S concentrations with 28 within-plot coefficients of variation for N ranging between 5 and 10% and for S between 7 and 15%. In 29 Utah, N and S concentrations in lichen species were correlated with each other in most cases, with R^2 30 ranging from 0.52-0.85. N concentrations in Melanelixia exasperatula and Melanohalea subolivacea could be correlated with average annual throughfall N deposition in Utah ($R^2 = 0.58$ and 0.31). Those 31 32 relationships were improved by focusing on deposition in fall-spring prior to lichen sampling in Utah (R^2 33 for *M. exasperatula*, *M. subolivacea*, and *X. montana* = 0.59, 0.42, and 0.28). In New Mexico, lichens 34 exhibited greater coefficients of variability within plots than between plots and could not be correlated 35 with throughfall N deposition. In neither study area was S correlated between lichens and throughfall 36 deposition, which may be the result of low S deposition over a narrow deposition range or complex lichen 37 assimilation of S. Lichen biomonitoring for N deposition in the region shows promise, but could 38 potentially be improved by sampling more thalli to reduce within-plot variability, repeated lichen 39 collection synchronized with throughfall changeouts to explore temporal variability, and washing lichen 40 collections to distinguish N and S that has been incorporated by the thalli from dry deposition that may 41 accumulate on lichen surfaces.

42

