Persistent Cold-Air Pools in Mountainous Areas: Distribution, Simulation, and Air Quality

Motivation

Persistent CAPs occur when the surface heating is not large enough to mix out the stably stratified atmospheric layer, making the stagnant conditions last for more than one day. Due to the stable atmospheric conditions during CAPs, air pollutants accumulate within the valley, which impacts human health. Studies have shown the numerical weather prediction (NWP) and chemical transport models (CTM) do not simulate the poor air quality during CAP events (Sun et al., 2020, Ivey et al., 2019).

Objectives

- Compare existing CAP classification methods: Whiteman et al., (2014), Pierce et al., (2019), & Yu et al., (2017)
- Develop new CAP classification method that can be used throughout the western U.S.
- Evaluate NWP and CTM model performance for CAP events

Approach

- Radiosonde data in western U.S. (12 locations), twice daily
- Surface PM_{2.5} concentrations from EPA air quality network
- Model performance for one month simulation in Salt Lake City - Resolution: 4km horizontal, 41 vertical layers

NWP: Weather Research & Forecasting (WRF v3.7) Planetary boundary layer (PBL) and land surface model (LSM) sensitivity testing to investigate atmospheric turbulence

CTM: Community Multiscale Air Quality Model (CMAQ v5.2) Emissions: 2011 National Emissions Inventory

Figure 1. Topographic map of 12 radiosonde locations in the western U.S. Map From: <u>https://en-gb.topographic-map.com/</u>

Xia Sun^{1,2}, Sean Colgan³, and <u>Heather A. Holmes⁴</u>

¹CIRES, University of Colorado Boulder, ² NOAA/Global Systems Laboratory ³ Atmospheric Sciences Program, University of Nevada, Reno ⁴Department of Chemical Engineering, University of Utah

- VCP underestimates the number of CAP events in the western U.S. because it requires a deep stable layer • VHD thresholds based on PM_{25} concentrations depend on air pollution emissions, not consistent over time or location
- New CAP classification method classifies CAPs using local meteorology (wind speed and surface pressure)
- Normalized VHD provides a method to compare CAP classification and strength across locations
- Air quality model simulated elevated $PM_{2.5}$ concentrations during CAP events but underestimated the magnitude
 - NWP: Underestimated CAP strength in WRF contributes to the underestimated PM_{2.5} concentrations in CMAQ
 - CTM: Underestimated ammonium nitrate formation contributes to the underestimated PM_{2.5} concentrations in CMAQ

Figure 4. January 2011 numerical simulations for Salt Lake City: (top) valley heat deficit (VHD), (*middle*) NO_x concentrations, and (*bottom*) PM_{2.5} concentrations. Hourly observations (black) compared to CMAQ simulations using four different PBL/LSM sensitivity runs from WRF.

References

Ivey, C.E., et al., (2019). Atmos. Environ., 213, 568-578. Pierce, A.M., et al., (2019). Atmos. Environ., 196, 103-117. Sun, X., et al., (2020). J. Appl. Meteorol. Clim., 59, 1029-1050. Whiteman, C. D., et al., (2014). Atmos. Environ., 94, 742–753. Yu, L., et al., (2017) Int. J. Climatol., 37, 2466-2476.

Department of Chemical Engineering, University of Utah http://www.haholmes.wordpress.com Mather.holmes@chemeng.utah.edu