The Red Butte Canyon Ozone Project Department of Atmospheric Sciences, University of Utah, Salt Lake City, UT. logan.mitchell@utah.edu ### Introduction We deployed a transect of Ozone (O₃) monitoring stations throughout Red Butte Canyon, a tributary canyon adjacent to the University of Utah. Red Butte Canyon is a United States Forest Service designated Research Natural Area and already has significant monitoring resources deployed in it. This network will produce a dataset with several applications ranging from: (a) probing the role of canyon flows in the transport of O₃ during stratospheric injections in the summer (b) examining the exchange of O₃ from the free troposphere with stagnant air in persistent cold air pools in the winter (c) the potential for using the site to assist in understanding and monitoring background O₃ concentrations, and (d) examining the impact of anthropogenic activities on O_3 formation. A better understanding of these outstanding questions is central in the implementation of successful O₃ mitigation policies in Utah. Ryan Bares & Dave Eiriksson at the Knolton Fork (KF) site Highest O₃ was seen in the middle of the RBO transect, demonstrating photochemical O₃ production downwind of SLC | Table 1. Number of days and 8-hour averages > 70 ppb | | | | |--|-----------------------------|-----------------------------|----------------------| | Site | # of days with | # of hours with | Max 8hr | | | 8hr O ₃ > 70 ppb | 8hr O ₃ > 70 ppb | O ₃ (ppb) | | KF | 8 | 45 | 92 | | TM | 20 | 98 | 93 | | ARBR | 38 | 215 | 100 | | MTMET | 13* | 72* | 89* | | UOU | 12* | 52 * | 84* | | QHW | 12 | 48 | 85 | | * MTMFT and UOU have data gaps during the highest | | | | ozone episodes, so the counts and max represent minimum values. ## Seasonal diel profiles (below): - Highest O₃ in JJA were observed at TM & ARBR sites - QHW always had lower O₃ than Red Butte sites. Nighttime urban titration visible - All sites except KF in DJF had diel profiles suggesting they're affected by urban emissions & therefore may not be ideal for regional background O₃ monitoring As O₃ becomes titrated in SLC, small changes in winds toggle the O₃ at ARBR between air masses causing mixing (above). This may be the dominant mechanism of oxidant exchange with PCAP air masses via tributary canyons that contributes to PM_{2.5} formation during PCAPs. This is shown through an entire PCAP event below. ## Data collection is ongoing This work is supported by funding from the **Utah Division of Air** Quality #### Salt Lake Measurement Programs - (a) TRAX light rail network (http://utahaq.chpc.utah.edu/) - (b) Urban CO₂ network (https://air.utah.edu/) - (c) MesoWest (http://mesowest.utah.edu/) (d) Utah Div. of Environmental Quality (http://air.utah.gov/)